EDDY COVARIANCE MEASUREMENTS OF METHANE FLUX AT REMOTE SITES WITH NEW LOW-POWER LIGHTWEIGHT FAST GAS ANALYZER

G. Burba¹, L. Xu¹, J. Schedlbauer², D. Zona³, T. Anderson¹, D. K. McDermitt¹, S. Oberbauer², W. Oechel⁴, A. Komissarov¹, and B. Riensche¹

¹LI-COR Biosciences, Lincoln, NE, USA; ²Florida International University, Miami, FL, USA; ³University of Antwerp, Belgium, ⁴San Diego State University, San Diego, CA, USA; *george.burba@licor.com

INTRODUCTION

Majority of natural CH₄ production:

- remote unpopulated ecosystems •
- territories with little or no infrastructure •
- areas without easily available power grid
- arctic and boreal wetlands, tropical mangroves, etc.

Present approaches to measure fast CH₄ fluxes:

• fast and semi-fast closed-path analyzers

NEW PROSPECTS FOR CH4 STUDIES

The stand-alone LI-7700 open-path methane analyzer requires 10 Watts of power, which is 30-150 times below present closed-path fast systems for CH4 flux

LI-7700 provides a new and unique opportunity for measuring CH₄ production where it actually occurs, rather then measuring it where power grid and roads are available

FREQUENCY RESPONSE

Ensemble averages of normalized midday co-spectra are plotted below versus non-dimensional frequency for 5 contrasting ecosystems and setups

- have to work under significantly reduced pressures
- require powerful dry-scroll pumps
- require 300-1500 Watts and grid power

These may be reasons why CH₄ flux is often measured at locations with power, and not with high CH₄ production

New technology is needed to address this problem, and to allow researchers to measure CH4 Eddy flux at any source

LI-7700 AT A GLANCE

LI-7700 was developed to allow fast measurements of CH₄ flux with steady-state power consumption of about 10 W, which is 30-150 times below presently available technologies

- 5 ppb RMS noise at 10 Hz and 2000 ppb
- CH₄ measurements with frequencies up to 40 Hz via Ethernet
- Air temperature and pressure measured in sampling path

The consumption by entire open-path Eddy Covariance station in Florida Everglades was <30 Watts, including LI-7700 for CH4, LI-7500 for CO2/H2O, sonic anemometer, and air temperature/relative humidity sensors and barometer

METHANE FLUX MEASUREMENTS

Eddy Covariance measurements of CH₄ flux using the four prototypes of LI-7700 were conducted in 2006-2010 during nine deployments in five ecosystems with contrasting weather, soil moisture and CH₄ production:

- Sawgrass wetland in Florida Everglades
- Coastal wetlands of Arctic tundra in Barrow, AK
- Pacific mangroves in Mexico
- Bare soil and maize in Nebraska : zero-flux test

- At extremely low measurement height of 0.75 m above canopy top, there was a noticeable high frequency loss
- With strong turbulence (U>2.5 m s⁻¹ and H >100 W m⁻²), CH₄ flux co-spectra became comparable to that of CO₂ from LI-7500 even at such a low height
- In all other experiments with heights >0.75 m, CH4 flux co-spectra behaved similar to CO₂ from LI-7500

SURFACE HEATING

In the field experiment with artificial heater, surface heating was not seen in LI-7700, even when bottom mirror was heated >17 °C above ambient air temperature

• Four fast auxiliary input channels for sonic anemometer outputs

• Seven additional fast channels and USB data logging with an optional analyzer interface unit

SELF-CLEANING

• Field maintenance is minimized by a fullyprogrammable selfcleaning mechanism: spinning lower mirror with washer, heaters, and radiation shield

- Fully programmable heaters resolve dew formation and associated data loss
- Radiation shield minimizes both condensation and power consumption

• Ryegrass in Nebraska: zero-flux test

CH₄ fluxes were within the ranges reported in the literature for Everglades (Harriss *et al.*, 1988), fen in Canada (Bubier *et* al., 1993), peatland in Minnesota (Shurpali and Verma, 1998) and bog in Alaska (Moosavi *et al.*, 1996).

Hourly CH4 concentration and flux: sawgrass wetland , Florida

Ensemble averaged hourly flux: arctic tundra wetland, Alaska

Long-term integrated daily flux: sawgrass wetland, Florida

SUMMARY

- Open-path measurements of CH, flux using Eddy Covariance approach were conducted in nine experiments in four contrasting ecosystems
- CH₄ fluxes ranged from near-zero at night to 4.0 mg m⁻² h⁻¹ in arctic tundra and pacific mangroves (not shown), and to 3.5 mg m⁻² h⁻¹ in sawgrass wetland
- Diurnal patterns were similar to those from closedpath sensors (Kim *et al.*, 1998; Hendriks *et al.*; *etc.*)

• The extremely low-power technology allows placing LI-7700 in the middle of the source (wetland, rice paddy, forest, etc.) in the absence of the grid power

• Self-cleaning system allows to return the instrument to full operation within 20-30 seconds after the rain event

Zero-flux test: ensemble averaged hourly flux, Nebraska

• LI-7700 could significantly expand Eddy Covariance CH₄ flux coverage, and could significantly improve the estimates of global CH4 emissions and budget

ACKNOWLEDGEMENTS

Authors appreciate help and support provided by the LI-COR Engineering Team, Barrow Arctic Science Consortium (BASC), and numerous others. This project was supported by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer Program (STTR) program of the Department of Energy (DOE), Grant DE-FG02-05ER84283.

LI-COR is a registered trademark of LI-COR, Inc. All other trademarks belong to their respective owners.

